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NG7 2RD, UK 

Received 22 September 1989 

Abstract. The energy levels of a double-quantum-well system can be expected 
to occur in closely spaced pain, due to 'tunnelling', so raising the possibility that 
oscillations can occur at the tunnelling frequencies. This paper gives a detailed 
theory of the excitation of such a pair by an incident electron wavepacket, using a 
time-dependent. formalism and a one-dimensional system of barriers. It is confirmed 
that transient oscillations can be expected to occur in currents and charge densities 
near quasi-Esonances. It is further reasoned that to increase the temporal coherence 
of an incident pulse, it is desirable to have inelastic scatt,ering into a quasi-bound 
state. 

1. Introduction 

Since the pioneering work of Chang, Esaki and Tsu, [1,2],which found that  suit- 
ably designed low-dimensional barrier structures have regions where the differential 
conductivity is negative, there has been much experimental and theoretical work to  
investigate this phenomenon more thoroughly [3-51. I t  has been shown that  this fea- 
ture can give rise to  oscillatory behaviour, or bistability. The purpose of this paper 
is t o  discuss another source of instability in structures similar to  those that show the 
negative resistivity characteristic, but which arises by an entirely different mechanism. 

To set the scene for a detailed discussion it is convenient to  begin with a single one- 
dimensional well with infinite barriers. The Schrodinger equation for such a system is 
usually solved only for the central region, and the eigenstates are discrete. However, 
the equation also has solutions for the regions to  the left and right of the central region, 
and in these the eigenvalues form continua. If the infinite barriers are then reduced 
to  finite barriers the new problem has a continuum of energy levels, and the discret,e 
nature of the states that  were in the central region seems to  have disappeared. The 
situation is frequently described by introducing the concept of quasi-bound or quasi- 
resonant states, these being states that  are regarded as mainly concentrated in the 
central region with the property that  an electron placed in one of them will, in due 
course, leak out.  Such a description needs justification, for eigenstates are stationary 
in time and this concept of a quasi-bound state would appear to  be a time-dependent 
one. Nevertheless the idea is a useful one, and as will emerge, it can be placed on a 
firmer foundation. 

The  next step is t o  consider a system in which there are two wells, which for 
convenience are taken in the symmetrical form shown in figure 1. There would now 
seem t o  be two sets of quasi-bound states, each state being associated with both wells. 
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Figure 1. Diagram of the one-dimensional model of a symmetric double-well, triple 
barrier heteroshucture used in this paper. The barrier height is V ,  the well width b 
and the barrier width a. 

A number of experimenh have shown that the pairs of quasi-bound states exist [6] 
(and they have previously been calculated theoretically [l]) in suitable layer systems 
composed of semiconductors. They are not however, a t  least a priori, described by 
potential barrier systems such as figure 1 would suggest, for they have more compli- 
cated properties, and the experiments usually induce carriers from bound states into 
quasi-bound states by absorption of electromagnetic waves [6-81. These experiments 
do not, as far as is known, distinguish between the two wells for a wholly symmet- 
ric system since excitation only occurs between eigenstates [6,8,9]. In an asymmetric 
system, however, where eigenstates may be largely confined to  specific wells, optical 
excitation may then distinguish between wells [lo]. Luryi [4] has given an analysis 
of similar systems assuming that the eigenvalues are discrete. In fact they form a 
continuum, although some will have wavefunctions that are concentrated mainly in 
wells. It is our belief that  under weak electromagnetic excitation the transitions take 
place between eigenstates. If structure is observed, this is because of the variation 
of selection rules with frequency and does not, a priori, indicate that the transitions 
which have been induced have a spatial significance. On the other hand, evidence 
of oscillatory behaviour may be obtained using intense and coherent electromagnetic 
radiation [ll]. The passage of a current of electrons from the left to  the right would 
always seem to distinguish between the two wells, for an electron must first tunnel 
into the left-hand well before it can tunnel into the right-hand one. There is then 
some reason to suppose that an oscillating current will be set up, with a frequency 
determined by the separation of the quasi-bound pair. The  purpose of this paper is 
t o  give the theory of such an effect, in a simple example. 

The  method will use an extension of one previously used in several tunnelling 
problems [5] ,  and amounts to the time-dependent solution of the Schrodinger equa- 
tion with, as the initial condition, a pulse to  the left of the barrier system. The  barrier 
system will be about the simplest one which exhibits the phenomenon t o  be investi- 
gated, and its solution is of interest because it can be used to infer what may occur 
with more complicated barrier structures. 

2. The time-independent solution 

Using the barrier system of figure 1, the first step is to  set up solutions of 
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taking the solution for e 5 0,  and V ( e )  = 0,  to be of the form 

,-iwt [e i k r  + R,(/c) e-ikr] 

where 

w = hk2/2m. 

That is, an incident plane wave of unit amplitude from the left and a reflected part 
with amplitude R,(k) .  The solution for all other values of e then follows. For regions 
where the potential is zero, the solut,ions take the form 

e-iWf[R,(k) eikr + ~ , ( k )  e-iLr] 

with complicated expressions R,(k) and L,(k) for the left and right travelling wave 
parts. For the moment it, is not necessary to give these forms explicitly, though in due 
course it will become essential to stoudy some of them in detail. 

Similarly, within the barriers the solutions take the form 

e-iwt[A,(Ii) eKz + B,(K) e-Kr] 

where 

hw = -(h211'2)/2m + v .  

3. The time-dependent solution 

It will be assumed t,hat at  t = 0 the wavefunction is entirely to the left of the barrier 
system, where it is zero for 2 < z1 and e > z2, and exp(ik,z) /f i  for el 5 e 5 t2 < 0, 
with L = x 2  - el. Using Fourier transforms it can be written in the alternative form 

where 

exp[i(ko - k)e2] eikr dk 

and 8 , ( t , 0 )  has zl in place of e2. 
For t > 0 it might appea.r that, t,he time-dependent solution is 

with 

q 2 ( z , t )  = -- exp[i(ko - k ) e 2 ]  exp[i(kz - wt)]  dk 

which satisfies the Schrodinger equat#ion for the region to the left of the barriers. It 
does not however satisfy the eqi~at~ion within any barrier, nor does it contain reflected 
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components. The  simplest procedure is to  infer the true solution as follows. For z < 0 
set 

with 

Q2(z, t )  = -- ' / L { e x p [ i ( k ,  - k)zz] ewiwt[eikz + R,(k) e-ikz]} dk 
%ria k - ko 

and a similar expression for Ql(z,  t )  with z1 replacing z,. For z within a well set 

{exp[i(k, - k)z2] e-iwt[R,(k) eikz + L,(k) e-ikz]} dlc 

where R,(k) and L,(k) are the appropriate amplitudes for that  well, and 

Q 2 ( z , t )  = -- / L { e x p [ i ( k ,  - lc)z2] e-'"'[A,(K) eKz + E,(K) e-K"]} dk 
2 r i a  k - k, 

for z within a barrier. Then Q(z, t )  = Q 2 ( z , t )  - 3,(2, t )  satisfies the Schrodinger 
equation and all matching conditions for all z, provided that the limits, which have 
been omitted in the above formulae, are taken to  be the same for all integrals. The 
choice of limits is not arbitrary. For example, choosing the range from -CO to  $03 

for k does not obviously ensure that ,  a t  t = 0, there is no reflected component for 
z < 0 and no part already within the system of barriers. Any difficulty is removed 
by regarding k as a complex variable and choosing a common contour of integration 
for all the integrals that  runs from k = --CO to  +m and that loops over the pole a t  
k = k, and any others that  are introduced by the R,, L,, A, and E,  coefficients. The 
contours can then be deformed into the upper large semicircle without crossing any 
poles, when those integrals which should vanish are found to  do so, leaving Q(z,O) 
as simply the incident pulse. In this connection i t  is relevant to  notice that ,  for a 
given incident k,  the R,, L,, . . . coefficients are determined solely by the structure of 
the barrier system, so their properties can be described as geometric. On the other 
hand the nature of the incident pulse shows itself in the exp[i(ko - k)z,]/(k - ko) 
and exp[i(ko - k)zl]  /(k - k o )  factors in the integrands, so these factors contain all 
the dynamical information. It is also useful to note that the Q, and Q, parts of Q 
can each be regarded as describing a semi-infinite pulse, one being displaced from the 
other. It follows that the overall behaviour can be obtained from the study of one of 
them, followed by displacement and subtraction. 

4. Properties of the solution 

For t > 0 it is not, possible, in general, to  evaluate the 3 ( z , t )  explicitly, and the most 
convenient approximation method is that of steepest descents, which is outlined in the 
appendix of this paper. The contours, which are initially identical, are then deformed 
as appropriate to  the different regions of the barrier structure. For present purposes 
it is not necessary to  examine the deformations in detail, for a good deal of insight 
can be obtained by asking how a 'quasi-resonance' can occur? In any chosen region 
of the barrier structure the integrand will have a pole a t  k = k, and, in general, some 
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others due to  whichever R,l (k) ,  L,(k), . . . is involved. (As will appear they actually 
all have the same pole structure.) The contour of steepest descent, for a given choice 
of 2, will change with time t ,  and as t increases it invariably happens that  one or 
more poles will be crossed. As each pole is crossed the solution gains a residue, and 
the frequency which goes with this residue is simply obtained by taking the value 
of w appropriate to  that  value of k. Tha t  is, a pole a t  k = k, gives a residue with a 
factor exp(-iwlt), where w1 = hk:/2m. The  pole does not in general lie on the real 
axis, and so the residue shows a damping with time. (It may be noted that  within 
a barrier the pole is often found from an expression in I<. A pole a t  I( = I<, gives 
liw = (-h21<12/21n)+V, and since the corresponding k satisfies ( l i2/2m)(k~+I<,2)  = V 
it follows that  again w = ( l ik:) /2m).  Since all the poles (except that  at k = I C o )  are of 
geometrical character, i t  can be anticipated that  these residues describe the excitations 
of the natural resonances of the system as the pulse propagates through it.  A detailed 
examination confirms these deductions, and it also demonstrates t ha t ,  in general, these 
‘resonances’ are only weakly excited. This too could have been anticipated, for the 
pulse is crossing barriers, so exponential damping can be expected. 

The  position changes drastically if a coefficient R,(k), and therefore each coeffi- 
cient, has a pole which is close to  k,. Near these poles the integrand can be written 
in the form 

C exp[i(kz - wt)] 
(k - kO)(k - 6,) 

or as 

where C is slowly varying with k. When both poles contribute the total is, approxi- 
mately 

(exp[i(koz - ur,t)] - exp[i(klz - wit)]) 
P o  - kl) 

and apart from any damping, the amplitude is enhanced by the ( I C o  - IC,) factor in 
the denominator. This i l l~st~rates  t,he meaning of ‘quasi-resonance’, for the sum of 
the residues then consists of one damped and one undamped oscillation, both of large 
amplitude and small frequency difference. 

In the two-well structure of figure 1 it can be expected that the poles of the 
coefficients, the ‘quasi-resonances’, will be in closely spaced pairs, so there is interest 
in what happens when k, is near a particular pair. Once the line of steepest descents 
has passed all three poles, an expression such as 

exp[i(kz - wt)] 
- k,)(k - h ) ( k  - kz) 

gives a pole contribution 

(1) 
exp[i(koz - wet)] exp[i(klz - wit)] exp[i(kzz - w2t)]  + + 
(.Eo - k,)(k, - k2)  ( k l  - kO)(k, - kz) (k, - kO)(k2 - k l )  . . ’ 

which is a superposition of three time-dependent forms, each of large amplitude, and 
with small frequency differences. In particular, the square modulus, which determines 
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Figure 2. Diagram showing the probable potential profile of a double-barrier, single 
well heterwtructure. Here the system is shown off-resonance, such that El and E, 
are far apart, and their associated wavefunctions Q i  and Q,. have peaks in their 
probability densities in different wells. As the voltage across the system is changed, 
the separation of the energy levels E, and E, is reduced until the levels anti-cross, 
at which point the states are described by the new wavefunctions $1 and $2, which 
are linear combinations of the old ones Q l  and Q,. 

the charge densit.y, has a component a t  the frequency difference of the two quasi- 
resonances. This is, basically, the effect we wished to  demonstrate, that  excitation 
near a double quasi-resonance can be expected to give rise to  charge and current 
oscillations at their difference frequency. 

Strictly speaking, in a real system, this effect could be seen in a double-barrier 
resonant tunnelling structure, as shown in figure 2, since due to  the formation of 
the accumulation layer, there are effectively two wells in the system. Initially the 
eigenvalues, which can be labelled E, and E,., are far apart and are associated with 
wavefunctions Q, and Q,. which are centred in different wells. As the resonance con- 
dition is approached, the eigenfunctions change to  forms such as 

1 
-(Q, k Qr) d3 

The associated eigenvalues will not coincide, but will have a tunnelling separation, and 
it is this which gives rise t o  charge and current oscillations. As the oscillat,ion frequency 
is determined solely by the geometry of the resonant structure, the possibility is that 
it can be tailored to obtain any chosen frequency. This conclusion has been reached 
on fairly general arguments and so can be expected with more complicated structures 
than are illustrated in figures 1 and 2. Nevertheless there is something to  be said for 
illustrating it in more detail, so t,he following analysis will show how these properties 
arise for the structure of figure 1. 

5. Detailed analysis 

A convenient way to  deal with a multi-well system is t o  consider figure 1, and set 
~ ( z ,  0) = r, exp[-ik(a + b ) ]  eikr + 1, exp[ik(a + b)]  e-ikz 
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so that the previously defined R,,(k) and L,(k) satisfy 

R,(k)  = exp[-ik(a + b ) ]  r,  + exp[ik(a + b)]  I ,  

Then 

where the elements aij are independent of n and define a transmission matrix with 

eikb(eKae2i6' - e-Ka -2iB e )  a -- 
l 1  - %sin28 

a22 = - 21 sin 28 

l 2  - %sin 28 

) 1 ,-ikb(-,Ka e -2iB +e-Kae2i8 

1 eikb(eKa - e-Ka) a -- 

1 e-ikb(-eKa + e-Ka) 
U 2 1  = - 21 sin 28 

where t a n 8  = k / K ,  with V = (h2/2m)(k2 + K 2 ) .  For a sequence of N barriers, all 
that  is necessary is to  multiply the various transmission matrices together. For a pulse 
coming from the left the final rN is taken to  be zero. In the present case of two wells 
the matrix must be cubed. I t  is then apparent that  every T,  (I,) is a multiple of r3 ,  
showing that they have the same pole structure as r3. It's denominator is found to  be 

aZlal2(all + a221 + ~ 2 2 ( a 2 1 a 1 2  + %%2) 

or 

e3Ka{-exp[i(kb + 2691 + 2exp[-i(tb + 28)] - 3exp[-3i(kb + 28)]} 

4e-2i8) 
+ eKa{eikb(2e2i8 + ,-2i8) + e-ikb(-2e2iB - 

+ 3exp[-i(3kb + 28)) + . . . (2) 

where the . . . part has not been given specifically as it is not needed. It is readily 
determined by noting that the whole expression is reversed in sign if both Ii' and 8 are 
reversed. The quasi-resonances are then associated with the value of k which make 
this expression vanish. They are in general complex numbers. 

To have a pole near k,, which is real, implies that  the zeros must be almost real, 
and since eKa is expect>ed t o  be large, it would seem that a first approximation to  the 
poles is obtained by setting the the terms in e3Ko to zero. Tha t  is 

exp[i(kb + 28)] = f l  . 

The next approximat,ion is to set 

k = k o + A k  e = e, + he I( = I<, + AK 

with exp[i(k,b + ZOO)] = 1 and t o  include the terms of (2) in eKa. I t  is then found 
that for each choice of k ,  there are two solutions of Ak,  which have real parts U of 
opposite signs, and imaginary parts t~ which have the same sign, where 

U = &(edKa sin 2 4 / b  o = -(e-2Ko sin2 $ B ) / b  
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19 = n , r / b f i  U = 2mV/h2. 

It therefore follows that  the separation in angular frequency, st,, of the geometrical 
resonances is determined by 12hkou/ml and so involves e-Ka,  whereas the widths of 
the resonances are determined by Ihk,v/ml and so contain e-2Ka. Inspection of the 
expression for U shows that the separation of the pairs of modes increases with their 
associated energies. 

6. Numerical analysis 

Because of the wide interest in resonant tunnelling, and our suggestion that oscillations 
will be found (which are analogous to  those associated with the inversion splitting of 
NH,), it is of interest to  make some numerical estimates. Some results for the first 
(lowest energy) double quasi-resonance of a double-quantum-well structure (such as 
the one shown in figure 1) are shown in figures 3 and 4. 
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Figure 3. Plot of the logarithm of the half-life T, in seconds, associated with 
excitation of the first double resonancce as a function of barrier width (in A) for 
a symmetric triple barrier, double-well heterostructure for five different well widths 
(a), (b) ,  ( c ) ,  (d) and (e). Here (a) is 50 A ,  (b) is 100 A, (c) is 150 A,  (d) is 200 A and 
(e) is 250 A. The calculation was performed for the structure shown in figure 1 and 
uses a barrier height V of 230 meV, with an electronic mass of m e ,  the rest mass. 
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Figure 4. Plot of the logarithm of the oscillation frequency Ro, in Hz, associated 
with the first double resonance as a function of barrier width (in A )  for a symmetric 
triple barrier, double-well heterostructure for five different well widths (a), (b),  (c) ,  
(d) and (e).  Mere (a) is 50 A ,  (b) is 100 A,  (c) is 150 A,  (d) is 200 A and (e) is 250 A .  
The calculation was performed for the structure shown in figure 1 and uses a barrier 
height V of 230 meV, with an electronic mass of me,  the rest mass. 

7. Discussion and conclusions 

The theory has used a particular shape of pulse incident on a barrier system, a shape 
which has been chosen so that any other shape can, by Fourier analysis, be expressed 
as a superposition of such pulses. The barrier region is taken to  consist of potential 
barriers which are piecewise constant. This covers a wide variety of possibilities, but 
not all. Several features have emerged. In any given region the solution may be 
regarded as consisting of two parts, one of which is associated with a line integral 
and which arises from.the met,hod of steepest descents, and a second which arises 
from poles that  may have been crossed by the line of steepest descents. If any such 
poles are isolated the contzibution from the line integral, when the line goes near 
the pole, while small, is possibly greater than that from the pole. The position is 
however drastically altered if such a pole is not isolated, which is the special feature 
associated with resonant tunnelling. Then the pole contribution is likely t o  outweigh 
the line contribution. Indeed it is only under such circumstances that  the tunnelling 
should be described as resonant, a characteristic which is associated experimentally 
with relatively large current flow through a barrier system. (To have current through 
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a device a voltage must be applied across it: it is then incorrect to  assume that 
the potentials remain piecewise constant. Nevertheless such barrier systems can be 
expected to  have poles associated with quasi-resonances, and it is near coincidences 
with these poles which are, theoretically, needed for large current flows). 

In addition the study has shown that particularly with double-well systems, it 
is possible to  have two close geometrical resonances, which both enhance the pole 
contributions and produce current oscillations at  their difference frequency. A similar 
effect was noticed previously in a many-electron system [12], which may be particularly 
relevant in the present context for, in an actual device, a description in terms of 
potential barriers is a teniious concept, for really a manyelectron treatment is needed. 
The inversion spectrum of NH, has already been mentioned, and there appears to  be 
no obvious reason why inversion type oscillations should not occur in any system which 
has two or more closely spaced resonances, and can be driven by a current. 

It is also of interest to note that not only does a potential profile such as that  
shown in figure 2 provide the conditions necessary for an oscillation in the current, 
but that  the associated theory helps to  resolve a long-standing problem in resonant 
tunnelling. Many papers use an analysis based on the eigenstates of a barrier system, 
these eigenstates being regarded as describing a flux of electrons. We prefer to  regard 
the current as arising from a sequence of orthonormal wavepackets coming from the 
left, and accelerated by an applied electric field. As such packets will have come 
from a source it can be expected that their time duration will be determined by the 
properties of the source. I t  is to  be expected that,  in general, this time will be less than 
the half-life associated with the resonance in a barrier system, as it is det,ermined in 
the main by inelastic scattering in the source, which is expected to  be of order s 
or less. If this is so then there will be little build-up of intensity within the barrier 
system due to  multiple reflections, and little current will be transmitted. However, for 
a potential profile such as that shown in figure 2 the situation can be quite different. 
In this case an incident pulse may undergo inelastic scattering from the Fermi sea 
into the 2DEG situated in the accumulation layer next to the emitter barrier. As a 
result of this scattering the coherence time of the packet may be appreciably altered. 
If the time is lengthened i t  can be expected that the current through the system 
will be increased, due t o  the increase in intensity in the well. An examination of 
some experimental results supports this possibility. For a GaAs/AlGaAs symmetric 
quantumwell system [13] it has been found that the current through the first quasi- 
resonant state corresponds to  an electron flux of N electrons s-l m-2. This 
comes from a charge density in the 2DEG [14] of N 1015 electrons m-', giving an 
estimated lifetime of 2: lo-" s, a figure which seems to  be too long to  be associated 
with a source. To simulate the experimental conditions we have taken barrier widths 
as 56 A,  the barrier height as 32 meV., an effective barrier mass as 0.1 me, the well 
widths as 50 A and the well effective mass as 0.067me. This does not entirely simulate 
the structure of figure 2 ,  for i t  is similar to  the structure of figure 1. Nevertheless it 
produces a value for 7 of 2: s, which is of the same order as the observed value. 
We believe this confirms our suggestion that to  increase the current through a barrier 
system it  is necessary to  have inelastic scattering into a trap before the barrier system, 
and to  have this trap part of the quasi-resonance. 
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Appendix. The method of steepest descents 

The technique used in this paper involves separating an integral, Q ( z , t ) ,  into two 
parts; Q1(z , t )  and Q 2 ( z , t ) ,  and then treating them separately. Q ( z , t )  alone has no 
pole a t  k = k,, whereas Q , ( z , t )  and Q 2 ( z , t )  both have poles a t  k = k,. Some care is 
needed in treating them near k = fco, and it is probably best to  let the integrals run 
from C = -R t o  +R, and then to  let R 4 co at  the end. The  integrands tend to  zero 
a s R - i m .  

The method of steepest descents is usually used for contour integrals of the type 

e$(') d r  . . . 

where z is a complex variable, and c is a line between two points. At any z ,  d ( r )  
can be written as a + i@ where a and @ are real. The problem to be circumvented 
arises because eip will usually give an oscillating behaviour to  the integrand, so a first 
step is t o  deform the contour of integration so that most of the integral is obtained 
by integrating along a line on which @ is constant, then eip can be taken outside the 
integral. The best line to  follow is that which passes through a saddle point of 4 ( z ) ,  
particularly if ea is a rapidly decreasing quantity, for then the integral can readily be 
estimated. (The method is unsuitable if ea is rapidly increasing). In general, ea will 
decrease t o  zero, through positive values. There is however no guarantee that it will 
pass through the end points of c ,  so further line integrals (generally parts of the great 
circle) will be needed. However, in the cases of present interest, the integrands are 
zero a t  the end points, so it can be expected that the contributions from any such line 
integrals will be negligible. 

In fact the integrals of interest are not of the form (Al) ,  and as a next step it is 
convenient t o  study 

This has a pole a t  z = to, and it may not be possible to  follow the line of steepest 
descents, determined by e$(') wit,hout crossing the pole. In this case the integrand 
has an extra contribution of 27rie+('O). I t  is now obvious that  if the integral has the 
form 

F ( z )  d z .  
t - z ,  

where F ( z )  has poles, some of these may also contribute. 
In the above it has been convenient to  take z as the complex variable. In the 

body of the paper the complex variable is usually 6 ,  but it can also be A'. Also the 
expressions in which they appear usually contain two variables; z for position and t for 
time. The  contours of steepest descent vary with z and t and a given pole contribution 
may or may not enter depending upon their values. 
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